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Abstract 
 

Prompt losses of ions having turning points in the vicinity of the poloidal field 

null of a snowflake divertor are analyzed.  Classification of the ion trajectories is 

presented. It is concluded that prompt losses in a snowflake affect a broader zone than in 

the standard X-point divertor. The size of the phase-space “hole” produced by prompt 

losses is evaluated. 

PACS Numbers: 52.20.Dq; 52.55.Rk 

We consider ion drifts in the vicinity of the null-point of the snowflake divertor 

[1] leading to the prompt losses of these ions. In the case of the standard X-point 

geometry the prompt losses have been studied in a number of publications (e.g., [2-4] and 

references therein), whereas the snowflake geometry has not been explored in this 

context.  

Consider particles having initial positions on the closed flux surfaces in the 

vicinity of the separatrix. Some of  these particles have turning points near the poloidal 

magnetic field null and, due to the weakness of the poloidal magnetic field there, spend a 

long time in the turn-around area. As noted in Ref. [4], the drift caused by the radial 

variation of the toroidal field will have a strong effect on the trajectories of such particles. 

In particular, for a “normal” direction of the drift (from inside to outside of the separatrix) 

it would cause prompt losses of a certain group of ions. Although this process is 

relatively insignificant in terms of the total power and particle balance, it may be 

important as a source of non-ambipolar ion losses and, therefore, may lead to generation 
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of the radial electric field inside the separatrix [3, 4]. It may affect the behavior of 

partially-ionized impurities in the divertor and  may also be of some diagnostic value.  

In a snowflake divertor, the poloidal magnetic field near the null point scales as a 

square of the distance from the null, not linearly as in a “standard” X-point divertor. This, 

obviously, leads to a larger role of the aforementioned effects on the plasma behavior 

near the null and serves as a motivation for the present study.  

In this brief communication we are going to present a general drift trajectory 

analysis and evaluate prompt losses in the simplest case where both the effects of a radial 

electric field and particle collisions can be neglected. This can be considered as a first 

step to a more detailed assessment of prompt ion losses in a snowflake divertor.  

The geometry of the system is illustrated in Fig. 1. The poloidal field null serves 

as the origin for the Cartesian coordinates (x,z) in the poloidal plane; the major radius of 

the null-point is R. The poloidal magnetic field can be characterized by the magnetic flux 

function Ψ(x,z); the components of the poloidal field are: 
  

! 

B
x

= "(1/ r )#$ /#z , 

  

! 

B
z

= (1/ r )"# /"x , where r is the major radius of the observation point, r=R+x.  The null 

of the flux function Ψ(x,z) is chosen at the separatrix; the flux function is negative inside 

and positive outside the separatrix. Throughout this paper, we assume that the toroidal 

magnetic field is stronger than the poloidal field and, therefore, 
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 The parallel ion velocity is determined by the conservation of the ion energy W 

and magnetic moment. We consider the ions moving near the separatrix and are 

interested in the ions whose parallel motion has a turning point not far from the null-

point. Denoting the x-coordinate of the turning point by x*, one can write the following 

expression for the parallel velocity in terms of the particle energy W:  
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where we assume that x* <<R. The sign “minus” (“plus”) corresponds to the particle 

moving to the left (to the right). We assume that the ion gyroradius is small compared to 

other spatial scales and use zero gyro-radius drift approximation, leaving accounting for 

the next-order effects in the ion gyroradius [5] for the future work. 

 The ion drift is determined by the curvature and gradB drifts (in this paper we 

neglect the possible presence of the electric field). The analysis is significantly simplified 

by the fact that the ion parallel velocity not far from the turning point is much smaller 

than the ion perpendicular velocity. This allows us to neglect the curvature drift 

compared to the gradB drift, thereby yielding very simple equations of motion:  
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Substituting Eq. (1) into Eqs (2), one can easily find the equation for the particle drift 

trajectory: 
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where the upper (lower) sign corresponds to the particle moving to the left (to the right) 

in the geometry of Fig. 1, and the constants x0 and Ψ0 define the initial position of the 

particle. To be specific, we assume that initially the particle is situated to the right of the 

null point and moves to the left (this determines the sign of the last term in the right-hand 

side). The other possible cases can be treated similarly. One can relate Ψ0 to the distance 

Δ0 between the flux surface and the separatrix in the midplane: one has 
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"
0

= #B
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R + a( )$ 0
,  where BPM is the poloidal magnetic field on the separatrix at the 

midplane and a is the minor radius. 

We use the same model of the snowflake configuration as the one described in 

Refs. [1, 4, 5], with the branches of the separatix oriented as shown in Fig. 1. In this case, 

the flux function in the divertor area can be represented as [4]:  
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where η is a numerical coefficient of order 1 depending on the details of the geometry. In 

the model considered in Ref. 4, it was equal to 1.5. It is sometimes more convenient to 

characterize the flux surface not by the parameter Ψ0  (or Δ0), but by its shortest distance 

zmin to the magnetic field null (Fig. 1). For the flux function (4), one has 
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For the snowflake flux function (4), one can be rewrite Eq. (3) in terms of 

dimensionless coordinates 

! 

"  and 

! 

"  related to x and z by 
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The parameter ε is small, on the order of the ion poloidal gyro-radius over the minor 

radius. For a tokamak of DIII-D scale it is ~ 0.05. In these variables, the trajectory 

equation acquires a universal form 
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A few solutions of this equation are illustrated in Fig. 2 for ξ∗=-1 and trajectories passing 

through the point ξ=ξ0=0, ζ=ζ0 (note that, for ξ0=0, one has ζmin=ζ0 ). For large-enough 
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! 

"
0
, one has a trajectory 1 that is similar to a standard banana orbit, for which the particles 

stay inside the separatrix. For small-enough 

! 

"
0
, the particle is promptly lost (trajectory 

2). The marginal 

! 

"
0
corresponds to a singular trajectory 3 (which contains a self-

intersection).  

 The singular point corresponds to a situation where derivatives of the l.h.s. of Eq. 

(6) over ξ and ζ are zero. Imposing this condition, one finds the following parametric 

equation which determines the marginal ζmin  for any choice of ξ∗ and ξ0> ξ∗:  
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where t is a parameter. The sign “minus” here corresponds to the particles that are 

initially moving to the left. The plot of ζmin vs –ξ∗ for several values of ξ0 is presented in 

Fig. 3, with the upper branch corresponding to the particles that are moving to the left 

(high-field side) in the starting point, and the lower branch corresponds to the particles 

moving in the opposite direction.  

Eq. (7) shows, that, for particles starting in the vicinity of the null, ξ0~1, and 

having a significant parallel energy, so that -ξ*>>1, there is a simple approximate 

relation between  ζmin and -ξ* independent on ξ0:  
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The particles moving initially to the left (right) are lost if ζ0 lies below the upper 

(lower) branch, 
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min
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+
(#$*)), where the sign “minus” corresponds 

to the upper branch. We note that the loss region, for a given ζ0, extends far into domain 

of large –ξ*; in other words, particles with the turning points far into the inboard 
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direction are lost. However, when -ξ* becomes too large, the particles become transit 

particles circulating around the magnetic axis and not experiencing prompt losses. 

Therefore, there is an upper bound on -ξ*, beyond which the prompt loss is turned off. 

This upper bound approximately corresponds to   

! 

"x* # "a , or  

 
  

! 

"#* = "# *
crit
$ (a / R)%"2 / 5        (9) 

(a vertical line in Fig. 3, for a≈0.4R, ε=0.05). 

 To illustrate the application of these results, consider fraction f of particles 

promptly lost from an initially isotropic distribution with the same initial energy W. We 

look for the dependence of this fraction on the distance z from the origin, along the 

vertical axis (i.e., we take ξ0=0). For a given ζ0, lost are the particles with a small-enough 

value of |v|||.  Those occupy a strip of the surface area of 
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where 

! 

" *±  is a solution of equation 

! 
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min

±
(#$ * ) and 

  

! 

"
crit

* is defined by Eq. (9). The plot 

of the function f is presented in Fig. 4, for a/R=0.4 and ε=0.05. As a characteristic width 

(in z, or, equivalently, in ζ) of the zone from which the prompt loss occurs, one can take 

f(ζ0) = 
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the tip of the curves shown in Fig. 3, i.e., the point 
  

! 
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±
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referring to the width. Eq. (7) shows, that for ξ0=0 this point is 
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 Consider for comparison the standard X-point divertor, for which the flux 

function is  
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,        (12) 

where ηX is a numerical factor of order 1 accounting for the details of the geometry. 

Introducing dimensionless variables ξ and ζ according to x=ε2/3aξ, z=ε2/3aζ and using  

Eqs. (3) and (11), one finds the following trajectory equations: 
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A set of trajectories is shown in Fig. 5 for ξ0=0, ζ0=1 and several values of 

! 

" * . These 

results are consistent with those presented in a detailed paper [6]. 

An analog of Eq. (7) reads now as 
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The plot of 

! 

"
min

±
(#$*)  for ξ0=0 is shown in Fig. 3 by dashed line. An analog of the 

equation (11) reads now as 

  

! 

z
w

= 0.687a"2 / 3         (15) 

In other words, the width of the zone strongly affected by prompt losses is by a factor of 

(1/ε4/15)  broader in the snowflake divertor than in an X-point divertor. Numerically, this 

is a factor between 2 to 3 for most of the existing tokamaks.   
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 The characteristic time τloss for the ion to leave the zone of the prompt losses can 

be evaluated by dividing the distance zw  (Eq. (11)) by the drift velocity, cW/eRBT. This 

yields the following estimate of the loss time:  
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where 
  

! 

"
i
*  is the poloidal ion gyroradius at the midplane, and BP is the poloidal magnetic 

field strength in the midplane.  Collisions do not affect this loss channel provided the ion 

scattering time over the angle ~ the angular width of the loss-strip (see discussion before 

Eq. (10)), which is 
  

! 

"
scatt

~ "
ii
(a / R), with 

  

! 

"
ii
 being the standard ion collision time. The 

ion temperature and density here correspond to the zone at the distance of order of zw 

above the null-point. Taking as an example Ti~300 eV, n~3×1013 cm-3, a/ρi*~20, a/R=0.4, 

BT/BP~5, R~1.5 m, one finds that τloss/τscatt~0.3; in other words, the scattering does not 

play a dominant role. The result, however, strongly depends on the ion temperature and 

may vary significantly from one device to another.  

 In summary: the mechanism of prompt ion losses considered in Refs. [2, 3, 6] for 

the X-point divertor is analyzed for the snowflake configuration. The general 

classification of the ion trajectories in the vicinity of the null-point is presented. The 

width of the affected zone and the loss time is evaluated. It is concluded that this 

mechanism affects a broader zone than in the standard X-point divertor. 

 The authors are grateful to I. Joseph, T. Rognlien and X. Xu for helpful 

comments. Prepared by LLNL under Contract DE-AC52-07NA27344. 
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Fig. 1 The geometry of the problem. The separatrix is shown in red; the confinement 

region is situated between the two upper branches of the separatrix. Shown in black is 

one of the flux surfaces; z min marks the flux surface where the particle was initially 

situated.  Note that z0=zmin only for x0=0. 
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Fig. 2. Particle trajectories in the vicinity of the poloidal field null for the particles 

starting at ξ=0. Black dots are the starting points; arrows indicate initial direction. 

a) Particles moving to the left (to the high-field side) in the starting point for ξ∗=-

1. The red line is a singular self-intersecting trajectory which separates the 

particles experiencing and not experiencing prompt losses. Note that the losses 

occur predominantly through the high-field side, with only a relatively narrow 

region between the null and the loss boundary on the low-field side. b) Particles 

moving to the right in the starting point. These trajectories are populated by the 

particles that are reflected in the turning point and not promptly lost. In particular, 

the green trajectory is not populated.    
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Fig. 3 Dependence of the position of the marginal flux surface on the position of the 

turning point –ξ* for several values of ξ0. The upper (lower) branch is marked in 

the text by 
  

! 

"
0m

± . For ξ0>0.685 only the upper branch remains. For the given spatial 

point, prompt losses occur for the particles lying below the upper branch for the 

particles moving to the left, and below the lower branch for the particles moving 

to the right. Dashed curve correspond to the X-point divertor (Eq. () with ξ0=0).  

The vertical dashed line corresponds to 
  

! 

"
crit

*  for a=0.4R, ε=0.05. 
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Fig. 4. The dependence of the fraction of the empty part of the phase space on the 

distance of the starting point from the separatrix, for the particles with ξ0=0.  

Dashed vertical line shows the inflection point (Eq. (11)).
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ζ0 



 14 

 

 

 

 

 

Fig. 5 Particle trajectories in the X-point geometry. The starting point is ξ0=0, ζ0=1. 

Dashed lines are the branches of the separatrix. 

 

 

 


